Electronic timers

Product group picture

Electronic timers

Table of contents
Electronic timers
Table of contents 1/2
Overview 1/3
Approvals and marks $1 / 4$
CT-D range 1/5
Table of contents 1/6
Benefits and advantages 1/7
Ordering details 1/8
Function diagrams 1/9
Connection diagrams 1/12
Technical data 1/13
Technical data, Technical diagrams 1/15
Wiring notes, Dimensional drawings 1/16
CT-E range 1/17
Table of contents 1/18
Benefits and advantages 1/19
Ordering details 1/20
Function diagrams 1/22
Connection diagrams 1/27
Connection diagrams, Technical diagrams 1/28
Technical data 1/29
Wiring notes, Dimensional drawings 1/31
CT-S range 1/33
Table of contents 1/34
Benefits and advantages 1/35
Ordering details - multifunctional 1/37
Ordering details - singlefunctional 1/38
Ordering details - Accessories 1/39
Function diagrams 1/41
Connection diagrams 1/49
Technical data 1/52
Technical diagrams 1/55
Wiring notes, Dimensional drawings 1/56

Electronic timers

Overview

Timing function	
\boxtimes	ON－delay
	OFF－delay
\	ON－and OFF－delay
1』区Impulse－ON	
1 Ω Impulse－OFF	
1」】 Impulse－ON and OFF	
$\Omega \boxtimes$ Flasher starting with ON	
Ω Flasher staring with OFF	
$\Omega \boxtimes$	Flasher starting with ON or OFF
区几	Pulse generator starting with ON or OFF
［1］	Pulse former
\triangle	Star－delta change－over
$\triangle 1 \Omega$	Star－delta change－over with impulse
$\Delta \boxtimes$	Star－delta change－over twice ON－delayed
®＋$\boxtimes 1 \Omega$ ■1几 further functions （depending on device）	

multifunctional	single－functional
CT－MFD	CT－ERD
CT－MFD	CT－AHD
CT－MFD	CT－VWD
CT－MFD	
CT－MFD	CT－EBD
CT－MFD	
	CT－TGD
CT－MFD	
	$\begin{aligned} & \text { CT-SDD, } \\ & \text { CT-SAD } \end{aligned}$

Technical data（extract）

Time ranges
Control supply voltage
Type and number of contacts
Control inputs

multifunctional	single－functional	multifunctional	single－functional
CT－MFE， CT－MKE	CT－ERE， CT－EKE	CT－MVS，CT－MFS， CT－MBS，CT－WBS	CT－ERS
CT－MFE	CT－AHE， CT－ARE， CT－AKE	CT－MVS，CT－MFS， CT－MBS	CT－APS， CT－AHS， CT－ARS
		CT－MVS，CT－MXS， CT－MFS，CT－MBS	
CT－MFE， CT－MKE	CT－VWE	CT－MVS，CT－MFS， CT－MBS，CT－WBS	
	CT－AWE	CT－MVS，CT－MFS， CT－MBS	
		CT－MXS	
CT－MFE， CT－MKE		CT－MFS，CT－MBS， CT－WBS	
CT－MFE， CT－MKE	CT－EBE	CT－MFS，CT－MBS， CT－WBS	
		CT－MVS	
		CT－MXS	
CT－MFE		CT－MVS，CT－MFS， CT－MBS	
			CT－SDS
	CT－SDE	CT－MVS．2x， CT－MFS，CT－MBS	
	CT－YDE		
		CT－MVS，CT－MXS， CT－MFS，CT－MBS， CT－WBS	

Multifunction devices：
$8(0.05 \mathrm{~s}-100 \mathrm{~h})$
Single－function devices：
5 single ranges $(0.05-1 \mathrm{~s}, 0.1-10 \mathrm{~s}$,
$0.3-30 \mathrm{~s}, 3-300 \mathrm{~s}, 0.3-300 \mathrm{~min})$
Wide ranges \quadSingle and dual ranges
$1 \mathrm{c} / \mathrm{o}$ contact
CT－SDE： $1 \mathrm{n} / \mathrm{o}$ contact and $1 \mathrm{n} / \mathrm{c}$
contact
CT－MKE，CT－EKE，CT－AKE： 1 thyristor
voltage－related triggering，polarized
CT－MFE，CT－AHE，CT－AWE：
with auxiliary voltage

$10(0.05 \mathrm{~s}-300 \mathrm{~h})$
CT－ARS，CT－SDS：
$7(0.05 \mathrm{~s}-10 \mathrm{~min})$
Wide，multi and single ranges
1 or 2 c／o contacts
CT－MVS．21，CT－MFS，CT－MBS：
2nd c／o contact selectable as inst．
contact
CT－SDS： 2 n／o contacts
voltage－related triggering，non－
polarized，capable of switching a
parallel load
CT－MFS，CT－MBS，CT－AHS：
volt－free triggering

Electronic timers
Approvals and marks

－	existing	CT－D													
Approvals		$\begin{aligned} & \stackrel{N}{\Gamma} \\ & \stackrel{\vdots}{\stackrel{1}{0}} \end{aligned}$	$\stackrel{\vdots}{\stackrel{i}{N}}$	$\begin{aligned} & \stackrel{N}{\underset{\sim}{\sim}} \\ & \stackrel{\sim}{\Psi} \\ & \stackrel{1}{U} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{U} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{1}{\top} \\ & \stackrel{1}{\top} \end{aligned}$	$\stackrel{N}{\underset{3}{3}}$		$\begin{aligned} & \stackrel{N}{\dot{O}} \\ & \stackrel{\rightharpoonup}{⿺} \\ & \stackrel{1}{U} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \stackrel{\vdots}{\hat{0}} \\ & \stackrel{H}{⿺} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{¢} \\ & \stackrel{N}{U} \end{aligned}$		
（40）	UL 508，CAN／CSA C22．2 No． 14	\square	\square	－	－	－	－	－	－	\square	\square	\square	\square		
${ }^{\text {CB }}$	CB scheme	\square		－		－		－	－	\square					
EH［	EAC	\square	\square	\square	－	－	－	－	－	－	－	\square	\square		
（cc）	CCC	\square	－	－	－	－	－	－	－	－	－	\square	\square		
（1）	RMRS	－	\square	－	－	\bullet	－	－	－	－	－				
Marks															
C ϵ	CE	－	－	－	－	－	－	－	－	－	－	\square	\square		
©	C－Tick	\square	\square	\square	\square	－	ㅁ	－	－	－	\square	\square	\square		
－existing －pending		CT－E													
Approvals		$\sum_{\stackrel{1}{U}}^{\stackrel{u}{u}}$	$\begin{aligned} & \underset{\sim}{\underset{r}{\sim}} \\ & \stackrel{\leftarrow}{\cup} \end{aligned}$	$\stackrel{\text { 山上 }}{\underset{\sim}{\top}}$	$\underset{\underset{\sim}{\underset{\sim}{r}}}{\stackrel{\underset{\sim}{r}}{\sim}}$	$\sum_{\stackrel{1}{0}}^{\stackrel{1}{3}}$			$\underset{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \text { 山 } \\ & \stackrel{0}{0} \\ & \stackrel{1}{0} \end{aligned}$	$\sum_{\stackrel{1}{\mathrm{x}}}^{\stackrel{\rightharpoonup}{0}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{4}} \\ & \stackrel{\rightharpoonup}{\cup} \end{aligned}$			
（40）	UL 508，CAN／CSA C22．2 No． 14	－	－	－	\square	－	\square	－	－	－	－	\square	\square		
（1）	GL	\square	－	\square	\square	－	－	－	－	\square	\square	－	－		
CB	CB scheme	\square	－	\square	\square	－	\square	\square	－	\square					
EH［	EAC	－	－	－	\square	－	－	－	－	－	－	\square	\square		
（cc）	CCC	\square													
（1）	RMRS	－	－	\square	－	－	－	－	－	\square	－	－	\square		
Marks															
C ϵ	CE	\square	－	\square	\square	\square	\square	－	\square	－	\square	\square	\square		
©	C－Tick	\square	\square	\square	－	\square									
existing －pending		CT－S													
Approvals		$\begin{aligned} & n \\ & \stackrel{n}{\infty} \\ & N \\ & \underset{\sim}{\dot{N}} \\ & \sum_{i}^{1} \end{aligned}$	$\begin{aligned} & \frac{0}{\omega} \\ & \underset{\sim}{X} \\ & \underset{\sim}{\infty} \\ & \sum_{i}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & \underset{N}{N} \\ & \dot{N} \\ & \sum_{i}^{\infty} \\ & \underset{U}{x} \end{aligned}$	$\begin{aligned} & \frac{0}{\omega} \\ & \stackrel{N}{N} \\ & \dot{N} \\ & \stackrel{N}{N} \\ & \stackrel{1}{0} \end{aligned}$	$\frac{0}{0}$ $\underset{\sim}{N}$ 	$\begin{aligned} & \stackrel{0}{N} \\ & \stackrel{y}{N} \\ & \underset{N}{\infty} \\ & \sum_{0}^{\infty} \\ & \dot{1} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & \stackrel{N}{\sim} \\ & \underset{\sim}{\infty} \\ & \stackrel{\sim}{山} \\ & \stackrel{1}{\circlearrowleft} \end{aligned}$		$\begin{aligned} & \frac{0}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \frac{1}{c} \\ & \underset{0}{c} \end{aligned}$	$\begin{aligned} & 0 \\ & \omega \\ & \times \\ & \underset{\sim}{x} \\ & \dot{n} \\ & \stackrel{1}{c} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{T} \\ & \underset{\sim}{T} \end{aligned}$			
©（0）	UL 508，CAN／CSA C22．2 No． 14	\square	－	\square	\square	\square	\square	\square							
（1）	GL	\square	\square	\square	\square	－	－	\square							
EP［	EAC	－	－	－	－	－	－	\square	\square	－	－	\square	\square	－	\square
CB	CB scheme	\square	－	－	－	－	－	－	－	\square	\square	\square	\square	\square	－
（cc）	CCC	－	－	\square	\square	－	－	－	\square	－	－	\square	\square	－	－
（4）	RMRS	\square	\square	\square	\square	\square	\square	－	\square						
鲁	Rail applications ${ }^{1)}$		－	\square	■				－		－			－	
Marks															
C ϵ	CE	\square	\square	－	－	\square									
©	C－Tick	\square	\square	\square	\square	\square	－	－	\square	\square	\square	\square	\square	－	－

[^0]

CT-D range

Table of contents

CT-D Range

Benefits and advantages 1/7
Ordering details $1 / 8$
Function diagrams $1 / 9$
Connection diagrams 1/12
Technical data 1/13
Technical data, Technical diagrams 1/15
Wiring notes, Dimensional drawings 1/16

CT-D range

Benefits and advantages

Characteristics

- Diversity:
- 2 multifunction timers
- 10 single-function timers
- Control supply voltages:
- Wide range: 12-240 V AC/DC
- Multi range: $24-48 \mathrm{~V}$ DC, $24-240 \mathrm{~V} \mathrm{AC}$
- 7 time ranges from 0.05 s to 100 h or

4 time ranges from 0.05 s to 10 min

- Width of only 17.5 mm
- Light-grey housing in RAL 7035
- Devices with:

1 c/o contact ($250 \mathrm{~V} / 6 \mathrm{~A}$) or $2 \mathrm{c} / \mathrm{o}$ contacts ($250 \mathrm{~V} / 5 \mathrm{~A}$) Control input: voltage-related triggering, polarized,
capable of switching parallel loads

- Approvals / Marks (partly pending, details see page 1/4)

${ }^{1)}$ Only for devices with $1 \mathrm{c} / \mathrm{o}$ (SPDT) contact

Benefits

Direct reading scales (1)
Direct setting of the time delay without any additional calculation provides accurate time delay adjustment.

LEDs for status indication (2)
All actual operational states are displayed by front-face LEDs, thus simplifying commissioning and troubleshooting.

Switching currents

The CT-D range timers allow an output load of up to 6 A on devices with $1 \mathrm{c} / \mathrm{o}$ contact and up to 5 A on devices with $2 \mathrm{c} / \mathrm{o}$ contacts.

Connection terminals (3)
Wide terminal spacing allows connection of wires: $2 \times 1.5 \mathrm{~mm}^{2}(2 \times 16$ AWG) with wire end ferrules or 2×2.5 $\mathrm{mm}^{2}(2 \times 14$ AWG) without ferrules.

Width 17.5 mm (4)
With their width of 17.5 mm only, the CT-D range timers are ideally suited for installation in distribution panels.

Operating controls

1 LEDs for status indication

U-green LED: \quad control supply voltage applied
几— timing
R, R1, R2 - yellow LED: \checkmark output relay energized
2 Time range adjustment
3 Fine adjustment of the time delay
4 Preselection of the timing function

CT-D range
 Ordering details

Description

The CT-D range in MDRC design with a width of only 17.5 mm fits into all domestic installation and distribution panels.
The CT-D range represents a link between industry and the installation types. For maximum flexibility in operation, 10 single-function as well as 2 multifunction devices with 7 timing functions are available. The devices offer 4 or 7 time ranges from 0.05 seconds up to 100 hours. Their wide input range allows the use in applications worldwide.

Ordering details

Timing function	Rated control supply voltage	Time ranges	Control input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (lb)
Multifunctional ${ }^{1)}$	$\begin{aligned} & 24-240 \vee \mathrm{AC} \\ & 24-48 \mathrm{~V} C \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / 0$	CT-MFD. 12	1SVR500020R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
Multifunctional"	$\begin{aligned} & 12-240 \\ & \text { V AC/DC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	■	$2 \mathrm{c} / 0$	CT-MFD. 21	1SVR500020R1100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
ON-delay	$\begin{aligned} & 24-240 \text { V AC } \\ & 24-48 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	-	$1 \mathrm{c} / 0$	CT-ERD. 12	1SVR500100R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			-	$2 \mathrm{c} / 0$	CT-ERD. 22	1SVR500100R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
OFF-delay			\square	$1 \mathrm{c} / 0$	CT-AHD. 12	1SVR500110R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			\square	$2 \mathrm{c} / 0$	CT-AHD. 22	1SVR500110R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
ImpulseON			-		CT-VWD. 12	1SVR500130R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
Flasher starting with ON			-	$1 \mathrm{c} / 0$	CT-EBD. 12	1SVR500150R0000		
Pulse generator		$\begin{aligned} & 2 \times 7(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	\square		CT-TGD.12 ${ }^{2 /}$	1SVR500160R0000		$\begin{aligned} & 0.060 \\ & (0.132) \end{aligned}$
			\square	$2 \mathrm{c} / 0$	CT-TGD. 22^{21}	1SVR500160R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
Star-delta changeover		$\begin{aligned} & 4(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	-	$2 \mathrm{c} / 0$	CT-SDD. 22^{31}	1SVR500211R0100		$\begin{aligned} & 0.065 \\ & (0.143) \end{aligned}$
			-		CT-SAD. 22^{4}	1SVR500210R0100		

[^1]Synonyms

used expression	alternative expression(s)	used expression	alternative expression(s)
$1 \mathrm{c} / \mathrm{o}$ contact	SPDT	voltage-related	wet / non-floating
2 c/o contacts	DPDT	volt-free	dry / floating

CT-D range

Function diagrams

Remarks
Legend
$\square \quad$ Control supply voltage not applied / Output contact open Control supply voltage applied / Output contact closed
A1-Y1/B1 Control input with voltage-related triggering
Terminal designations on the device and in the diagrams
The 1st c/o contact is always designated 15-16/18.
The 2nd c/o contact is designated 25-26/28.
The n / o contacts of the star-delta timers are designated with 17-18 and 17-28.
Control supply voltage is always applied to terminals A1-A2.

Function of the yellow LED
The yellow LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.
\boxtimes

ON-delay (Delay on make)

CT-ERD, CT-MFD

This function requires continuous control supply voltage for timing.
Timing begins when control supply voltage is applied. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

$1 \Omega \boxtimes$ Impulse-ON (Interval)
 CT-VWD, CT-MFD

This function requires continuous control supply voltage for timing. The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. The green LED flashes during timing. When the selected pulse time is complete, the flashing green LED turns steady. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset. Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

OFF-delay with auxiliary voltage (Delay on break) CT-AHD, CT-MFD

This function requires continuous control supply voltage for timing. If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ is closed, the output relay energizes immediately. If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de- energizes and the flashing green LED turns steady. If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ recloses before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input A1-Y1/B1 re-opens.If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

$t=$ adjusted time delay

1Ω Impulse-OFF with auxiliary voltage
 (Trailing edge interval)
 CT-MFD

This function requires continuous control supply voltage for timing. If control supply voltage is applied, opening control input A1-Y1/B1 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay deenergizes and the flashing green LED turns steady. Closing control input A1-Y1/B1, before the time delay is complete, de-energizes the output relay and resets the time delay. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

CT-D range
 Function diagrams

$\Omega \boxtimes \quad$ Flasher, starting with the ON time (Recycling equal times, ON first)
CT-EBD, CT-MFD
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

Ω Flasher, starting with the OFF time (Recycling equal times, OFF first) CT-MFD

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.
Control input A1-Y1/B1 of the CT-MFD is disabled when this function is selected.

Pulse generator, starting with the ON or OFF time (Recycling unequal times, ON or OFF first) CT-TGD

This function requires continuous control supply voltage for timing.
Applying control supply voltage, with open control input A1Y1/B1, starts timing with an ON time first. Applying control supply voltage, with closed control input A1-Y1/B1, starts timing with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The ON \& OFF times are independently adjustable.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

CT-D range

Function diagrams

Star-delta change-over (Star-delta starting) CT-SDD, CT-SAD

This function requires continuous control supply voltage for timing.
Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 17-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first output contact de-energizes the star contactor.
Now, the transition time t_{2} starts. When the transition time is complete, the second output contact energizes the delta contactor connected to terminals 17-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

Power circuit diagram

CT-D range

Connection diagrams

CT-MFD. 21

A1-A2	Supply:
	12-240 V AC/DC
A1-Y1/B1	Control input
15-16/18	1. c/o contact
25-26/28	2. c/o contact

CT-MFD. 12

$\begin{array}{ll}\text { A1-A2 } & \text { Supply: } \\ & 24-48 \text { V DC or } \\ & 24-240 \text { V AC } \\ \text { A1-Y1/B1 } & \text { Control input } \\ 15-16 / 18 & \text { 1. c/o contact }\end{array}$
\triangle CT-ERD. 22

A1	15	25	
A1	15		25
A2	16	18	26
18	16		
28	26	A2	

A1-A2	Supply:
	$24-48$ V DC or
	$24-240$ V AC
$15-16 / 18$	1. c/o contact
$25-26 / 28$	2. c/o contact

\boxtimes CT-ERD. 12

A1-A2 Supply:
24-48 V DC or
24-240 V AC
15-16/18 1. c/o contact

- CT-AHD. 22

A1-A2 Supply:
24-48 V DC or 24-240 V AC
A1-Y1/B1 Control input
15-16/18 1. c/o contact
25-26/28 2. c/o contact

CT-AHD. 12

1ח® CT-VWD. 12

$\curvearrowleft<$ CT-EBD. 12

2CDC 252180 F0b05

A1-A2 Supply:
24-48 V DC or 24-240 V AC
15-16/18 1. c/o contact

Л CT-TGD. 22

A1-A2	Supply:
	$24-48 \vee$ DC or
	$24-240$ V AC
A1-Y1/B1	Control input
$15-16 / 18$	1. c/o contact
$25-26 / 28$	2. c/o contact

CT-TGD. 12

\triangle CT-SDD. 22

A1-A2	Supply:
	$24-48$ V DC or
	$24-240$ V AC
$17-18$	1. n/o contact (star contactor) $17-28$ 2. n/o contact (delta contactor)

\triangle CT-SAD. 22

A1-A2	Supply:
	$24-48$ V DC or
	$24-240$ V AC
$17-18$	1. n/o contact
	(star contactor)
$17-28$	2. n/o contact (delta contactor)

CT-D range
 Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

	CT-D with $1 \mathrm{c} / \mathrm{o}$ contact	CT-D with $2 \mathrm{c} / \mathrm{o}$ contacts	CT-MFD. 21
Input circuit - Supply circuit			
Rated control supply voltage $U_{\text {s }}$	24-240 V AC / 24-48 V DC		12-240 V AC/DC
Rated control supply voltage U_{S} tolerance	$-15 \ldots+10 \%$		
Rated frequency	DC or 50/60 Hz		
Frequency range AC	$47-63 \mathrm{~Hz}$		
Typical current / power consumption	see data sheet		
Power failure buffering time	min. 20 ms		
Release voltage	$>10 \%$ of the minimum rated control supply voltage $U_{\text {s }}$		
Input circuit - Control circuit			
Control input, control function	start timing external		
Kind of triggering	voltage-related triggering		
Resistance to reverse polarity	yes		
Parallel load / polarized	yes/yes		
Maximum cable length to the control inputs	$50 \mathrm{~m}-100 \mathrm{pF} / \mathrm{m}$		
Minimum control pulse length	20 ms		
Control voltage potential	see rated control supply voltage		
Current consumption of the control input	see data sheet		
Timing circuit			
Time ranges 7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$	1.) $0.05-1 \mathrm{~s} \quad$ 2.) $0.5-10 \mathrm{~s} \quad$ 3.) $5-100 \mathrm{~s} \quad$ 4.) $0.5-10 \mathrm{~min}$ 5.) 5-100 min 6.) $0.5-10 \mathrm{~h}$ 7.) $5-100 \mathrm{~h}$		
4 time ranges $0.05 \mathrm{~s}-10 \mathrm{~min}$ (CT-SDD, CT-SAD)	1.) 0.05-1 s 2.) $0.5-10 \mathrm{~s} 3.) 5-100 \mathrm{~s}$ 4.) 0.5-10 min		
Recovery time	$<50 \mathrm{~ms}$		
Accuracy within the rated control supply voltage tolerance	$\Delta t<0.005 \% / \mathrm{V}$		
Accuracy within the temperature range	$\Delta t<0.06 \% /{ }^{\circ} \mathrm{C}$		
Repeat accuracy (constant parameters)	$\Delta t< \pm 0.5 \%$		
Setting accuracy of time delay	$\pm 10 \%$ of fuill-scale value		
Star-delta transition time CT-SDD / CT-SAD	fixed 50 ms / adjustable: $20 \mathrm{~ms}, 30 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 60 \mathrm{~ms}, 80 \mathrm{~ms}$ or 100 ms		
Star-delta transition time tolerance CT-SDD / CT-SAD	$\pm 3 \mathrm{~ms}$		
Indication of operational states			
Control supply voltage / timing U: green LED	\checkmark : control supply voltage applied : timing		
Relay energized ($1 \mathrm{c} / \mathrm{o}$ contact / R: yellow LED $2 \mathrm{c} / 0$ contacts or inst. contact)	$\sqrt{\text { l }}$ output relay energized		
Operating elements and controls			
Adjustment of the time range	front-face rotary switch, direct reading scales		
Fine adjustment of the time value	front-face potentiometer		
Preselection of the timing function at multifunction devices	front-face rotary switch, direct reading scales		
Adjustment of the transition time	front-face potentiometer		
Output circuit			
Kind of output15-16/18	Relay, 1 c/o contact	-	
15-16/18; 25-26/28	--	Relay, 2 c/o contacts	
17-18; 17-28		Relay, 2 n/o contacts (CT-SDD, CT-SAD)	
Contact material	AgNi alloy, Cd free		
Rated operational voltage $U_{\text {e }}$	250 V		
Minimum switching voltage / minimum switching current	$12 \mathrm{~V} / 100 \mathrm{~mA}$		
Maximum switching voltage / maximum switching current	250 V AC/6 A	250 V AC/5 A	
Rated operational current $\mathrm{I}_{e} \quad$ AC-12 (resistive) at 230 V	6 A	5 A	
(IEC/EN 60947-5-1) AC-15 (inductive) at 230 V	3 A6 A	3 A	$\mathrm{n} / \mathrm{o}: 3 \mathrm{~A} \mathrm{n} / \mathrm{c}: 0.75 \mathrm{~A}$
DC-12 (resistive) at 24 V		5 A	
DC-13 (inductive) at 24 V	2 A	2 A	1 A
AC rating (UL 508) _.........utilization category (Control Circuit Rating Code)	$3300 \sim$ V AC \quad n/o: B 300 n/c: C 300		
max. rated operational voltage			
Maximum continuous thermal current at B300	5 A		n/o: 5 A
Maximum continuous thermal current at C300			n/c: 2.5 A
max. making/breaking apparent power at B300	3600 VA / 360 VA		n/o: 3600/360 VA
max. making/breaking apparent power at C300			n/c: 1800/180 VA
Mechanical lifetime	30×10^{6} switching cycles		
Electrical lifetime	0.1×10^{6} switching cycles		
Max. fuse rating to achieve short-circuit protection (IEC/EN 60947-5-1)	6 A fast-acting		

CT-D range

Technical data

	CT-D with $1 \mathrm{c} / \mathrm{o}$ contact	CT-D with 2 c/o contacts	CT-MFD. 21
General data			
Mean time between failures (MTBF)	on request		
Duty time	100\%		
Dimensions (W×HxD)	$\begin{aligned} & 17.5 \times 70 \times 58 \mathrm{~mm} \\ & (0.69 \times 2.76 \times 2.28 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 17.5 \times 80 \times 58 \mathrm{~mm} \\ & (0.69 \times 3.15 \times 2.28 \mathrm{in}) \end{aligned}$	
Weight	see ordering details		
Mounting	DIN rail (IEC/EN 60715), snap-mounting without any tool		
Mounting position	any		
Minimum distance to other units	no/no		
Degree of protection housing / terminals	IP50 / IP20		
Electrical connection			
Wire size fine-strand with(out) wire end ferrule	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \text { AWG }) \\ & 1 \times 0.5-2.5 \mathrm{~mm}^{2}(1 \times 20-14 \mathrm{AWG}) \end{aligned}$		
rigid	$2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16 \mathrm{AWG})$		
Stripping length	$1 \times 0.5-4 \mathrm{~mm}^{2}(1 \times 20-12$ AWG)		7 mm (0.28 in)
Tightening torque	$0.5-0.8 \mathrm{Nm}$ (4.43-7.08 lb.in)		
Environmental data			
Ambient temperature range \ldots	$-20 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85{ }^{\circ} \mathrm{C}$		
Climatic class IEC/EN 60068-2-30	3K3		
Relative humidity range	25-85\%		
Shock (half-sine)	$150 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$		
Isolation data			
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$ between all isolated circuits	type test: 4 kV ; 1.2/50 $\mu \mathrm{s}$		
Poillution category	3		
Overvoltage category	IIII		
Rated insulation voltage U_{i}.........input circuit / output circuit	300 V		
output circuit 1 / output circuit 2	not available	300 V	300 V
Basic insulation (IEC/EN 61140)	300 V		
Protective separation input circuit / output circuit (IEC/EN 61140, EN 50178)	250 V		
	routine test: $2.5 \mathrm{kV} ; 50 \mathrm{~Hz} ; 1 \mathrm{~s}$ type test: $2.5 \mathrm{kV} ; 50 \mathrm{~Hz} ; 60 \mathrm{~s}$		
Standards			
Product standard	IEC 61812-1		
Low Voltage Directive	2006/95/EC		
EMC Directive	2004/108/EC		
RoHS Directive	2011/65/EC		
Electromagnetic compatibility			
Interference immunity to	IEC/EN 61000-6-1, IEC/EN 61000-6-2		
electrostatic discharge	Level $3(6 \mathrm{kV} / 8 \mathrm{kV})$		
radiated, radio-frequency, electromagnetic field \quad IEC/EN 61000-4-3	Level $3(10 \mathrm{~V} / \mathrm{m})$		
electrical fast transient / burst	Level $3(2 \mathrm{kV} / 5 \mathrm{kHz})$		
surge	Level 4 (2 kV L-L)		
conducted disturbances, induced by radio-frequency fields	Level 3 (10 V)		
Interference emission	IEC/EN 61000-6-3, IEC/EN 61000-6-4		
high-frequency radiated \quad IEC/CISPR 22, EN 55022	Class B		
high-frequency conducted IEC/CISPR 22, EN 55022	Class B		

"Approvals and marks" see page 1/4.

CT-D range

Technical data, Technical diagrams

Technical diagrams

Load limit curves

AC load (resistive)

CT-D. $1 x$

CT-D.2x

Derating factor F
for inductive AC load

CT-D. 1 x

2CDC 252121 F0206

CT-D.2x

Contact lifetime

CT-D range

Wiring notes, Dimensional drawings

Wiring notes for devices with control input

A parallel load to the control input is possible

Dimensional drawings
dimensions in mm

CT-D devices with $1 \mathrm{c} / \mathrm{o}$ contact or $2 \mathrm{n} / \mathrm{o}$ contacts
CT-D devices with $2 \mathrm{c} / \mathrm{o}$ contacts

CT-E range
 Product group picture

CT-E range

Table of contents

CT-E Range

Product group picture 1/17
Table of contents 1/18
Benefits and advantages 1/19
Ordering details 1/20
Function diagrams 1/22
Connection diagrams 1/27
Connection diagrams, Technical diagrams 1/28
Technical data 1/29
Wiring notes, Dimensional drawings 1/31
Notes 1/32

CT-E range
 Benefits and advantages

Characteristics

- Diversity:
- 2 multifunction timers
- 56 single-function timers
- Control supply voltages:
- Dual range: 24 V AC/DC
- Single range: 110-130 V AC, 220-240 V AC
- Wide range: 24-240 V AC/DC (CT-MFE)
- Time ranges
- 5 single ranges: $0.05-1 \mathrm{~s}, 0.1-10 \mathrm{~s}, 0.3-30 \mathrm{~s}, 3-300 \mathrm{~s}$, $0.3-30 \mathrm{~min}$
- 8 time ranges: $0.05 \mathrm{~s}-100 \mathrm{~h}$ (CT-MFE)
- Devices with 1 c/o (SPDT) contact ($250 \mathrm{~V} / 4 \mathrm{~A}$) or solidstate output for high switching frequencies (thyristor 0.8 A)
- Approvals / Marks (details see page 1/4)

Benefits
Direct reading scales (1)
Direct setting of the time delay without any additional calculation provides accurate time delay adjustment.

LEDs for status indication (2)
All actual operational states are displayed by front-face LEDs, thus simplifying commissioning and troubleshooting.

Connection screws in M3 (Pozidrive 1) (3)
Easy and fast tightening and release of the connection screws with pozidrive, pan- or crosshead screwdriver.

Solid-state output (4)
Devices with solid-state output are the perfect solution for high operation cycles.

Synonyms

used expression	alternative expression(s)	used expression	alternative expression(s)
$1 \mathrm{c} / \mathrm{o}$ contact	SPDT	voltage-related	wet / non-floating
$2 \mathrm{c} / \mathrm{o}$ contacts	DPDT	volt-free	dry / floating

Operating controls

1 LEDs for status indication

U - green LED: \checkmark control supply voltage applied
R2: red LED: $\sqrt{ }$ output relay energized
2 Time range adjustment (only multifunctional devices)
3 Fine adjustment of the time delay
4 Preselection of the timing function (only multifunctional devices)

CT-E range

Ordering details

Description

The CT-E range with its excellent price/performance ratio offers an ideal solution for serial applications. 56 single-function devices with 5 different time ranges as well as 2 multifunction timers with 6 functions and 8 time ranges offer the highest possible flexibility for almost every application. For high operating cycles, contact-free CT-E timers with solid-state output are available.

CT-AHE

Timing function	Rated control supply voltage	Time ranges	Control Input	Output	Type	Order code	Price 1 pce	Weight (1 pce) kg (lb)
Multifunctional ${ }^{11}$	24-240 V AC/DC	$\begin{aligned} & 8(0.05 \mathrm{~s}- \\ & 100 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / 0$	CT-MFE	1SVR550029R8100		0.08 (0.18)
ON-delay	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC,} \\ & 220-240 \mathrm{VAC} \end{aligned}$	0.1-10 s	$\begin{array}{r}- \\ \\ \hline\end{array}$	$1 \mathrm{c} / 0$	CT-ERE	1SVR550107R1100		0.08 (0.18)
		$0.3-30 \mathrm{~s}$				1SVR550107R4100		
		3-300 s				1SVR550107R2100		
		0.3-30 min				1SVR550107R5100		
	110-130 V AC	0.1-10 s				1SVR550100R1100		
		$0.3-30 \mathrm{~s}$				1SVR550100R4100		
		3-300 s				1SVR550100R2100		
		0.3-30 min				1SVR550100R5100		
OFF-delay	$24 \mathrm{VAC} / \mathrm{DC}$	0.1-10 s	\square	$1 \mathrm{c} / 0$	CT-AHE	1SVR550118R1100		0.08 (0.18)
		$0.3-30 \mathrm{~s}$				1SVR550118R4100		
		3-300 s				1SVR550118R2100		
	110-130 V AC	0.1-10 s				1SVR550110R1100		
		$0.3-30 \mathrm{~s}$				1SVR550110R4100		
		3-300 s				1SVR550110R2100		
	220-240 V AC	0.1-10 s				1SVR550111R1100		
		$0.3-30 \mathrm{~s}$				1SVR550111R4100		
		$3-300 \mathrm{~s}$				1SVR550111R2100		
OFF-delay ${ }^{2}$)	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC,} \\ & 220-240 \mathrm{VAC} \end{aligned}$	0.1-10 s	-	$1 \mathrm{c} / 0$	CT-ARE	1SVR550127R1100		0.08 (0.18)
		0.3-30 s				1SVR550127R4100		
	110-130 V AC	0.1-10 s				1SVR550120R1100		
		$0.3-30 \mathrm{~s}$				1SVR550120R4100		
Impulse-ON	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC,} \\ & 220-240 \mathrm{~V} \mathrm{AC} \end{aligned}$	$0.1-10 \mathrm{~s}$	-	$1 \mathrm{c} / 0$	CT-VWE	1SVR550137R1100		0.08 (0.18)
		0.3-30 s				1SVR550137R4100		
		3-300 s				1SVR550137R2100		
	110-130 V AC	0.1-10 s				1SVR550130R1100		
		$0.3-30 \mathrm{~s}$				1SVR550130R4100		
		$3-300 \mathrm{~s}$				1SVR550130R2100		
ImpulseOFF2)	$24 \mathrm{~V} \mathrm{AC/DC}$	$0.05-1 \mathrm{~s}$	-	$1 \mathrm{c} / 0$	CT-AWE	1SVR550158R3100		0.08 (0.18)
	110-130 V AC					1SVR550150R3100		
	$220-240$ V AC					1SVR550151R3100		

[^2]
CT－E range
 Ordering details

ON－delay
OFF－delay
Impulse－ON

1凸
Impulse－OFF

Flasher starting with ON Flasher staring w Pulse former ON－delayed

Star－delta change－over with impulse
Pulse generator starting with ON or OFF

Bestellangaben

Timing function	Rated con－ trol supply－ voltage	Time ranges	Con－ trol Input	Output	Type	Order code	Price 1 pce	Weight （1 pce） kg（lb）
$\begin{aligned} & \text { Impulse- } \\ & \text { OFF } \end{aligned}$	24 V AC／DC	0．1－10 s	\square	$1 \mathrm{c} / 0$	CT－AWE	1SVR550148R1100		0.08 （0．18）
		0．3－30 s				1SVR550148R4100		
		$3-300 \mathrm{~s}$				1SVR550148R2100		
	110－130 V AC	0．1－10 s				1SVR550140R1100		
		0．3－30 s				1SVR550140R4100		
		$3-300 \mathrm{~s}$				1SVR550140R2100		
	220－240 V AC	$0.1-10 \mathrm{~s}$				1SVR550141R1100		
		$0.3-30 \mathrm{~s}$				1SVR550141R4100		
		3－300 s				1SVR550141R2100		
Flasher staring with OFF	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC,} \\ & 220-240 \mathrm{~V} \mathrm{AC} \end{aligned}$	0．1－10 s	－	$1 \mathrm{c} / 0$	CT－EBE ${ }^{4}$	1SVR550167R1100		0.08 （0．18）
	110－130 V AC					1SVR550160R1100		
Star－delta change－ over twice ON－delayed	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	$0.1-10 \mathrm{~s}$	－	$1 \mathrm{c} / 0$	CT-YDE	1SVR550207R1100		0.08 （0．18）
		$0.3-30 \mathrm{~s}$				1SVR550207R4100		
		3－300 s				1SVR550207R2100		
	110－130 V AC	0．1－10 s				1SVR550200R1100		
		0．3－30 s				1SVR550200R4100		
		$3-300 \mathrm{~s}$				1SVR550200R2100		
Star－delta change－over with impuls	$\begin{aligned} & 24 \text { V AC/DC, } \\ & 220-240 \text { V AC } \end{aligned}$	0．3－30 s	－	$\begin{aligned} & 1 \mathrm{n} / \mathrm{o}+ \\ & 1 \mathrm{n} / \mathrm{c} \end{aligned}$	CT-SDE	1SVR550217R4100		0.08 （0．18）
	110－130 V AC					1SVR550210R4100		
	$380-415$ V AC					1SVR550212R4100		
Multifunc－ tional ${ }^{8)}$	24－240V AC／DC	$\begin{aligned} & 0.1-10 \mathrm{~s}, \\ & 3-300 \mathrm{~s} \end{aligned}$	－	solide－ state	CT-MKE	1SVR550019R0000		0.08 （0．18）
ON－delay	24－240 V AC／DC	0．1－10 s	－		CT－EKE	1SVR550509R1000		0.08 （0．18）
		$0.3-30 \mathrm{~s}$				1SVR550509R4000		
		3－300 s				1SVR550509R2000		
OFF－delay	24－240 V AC	0．1－10 s	－		CT－AKE	1SVR550519R1000		0.08 （0．18）
		0．3－30 s				1SVR550519R4000		
		$3-300 \mathrm{~s}$				1SVR550519R2000		
${ }^{11}$ ）without auxiliary voltage Control input with voltage－related triggering ${ }^{2)}$ with fixed transition time－no triggering ${ }^{3)}$ solid－state output，functions and time range selection via external jumpers ${ }^{4}$ ）symetric ON \＆OFF times ${ }^{5}$ ）common contact ${ }^{6)}$ Functions：ON－delay（AC／DC），Impuls－ON（AC only），Flasher starting with OFF（AC only）								

Notice

CT－．．．KE are solid－state timers with thyristor output for 2－wire applications．They are connected directly in series with the control coil of contactors or relays．Voltage should not be applied without a load connected，because there is no current limiting in the unit．

CT-E range

Function diagrams

Remarks

Legend

\square Control supply voltage not applied / Output contact open Control supply voltage applied / Output contact closed A1-Y1/B1: Control input with voltage-related triggering

Terminal designations on the device and in the diagrams The c/o contact is always designated 15-16/18.
The n/o contacts are designated with 15-16 and 15-18. Control supply voltage is always applied to terminals A1-A2/B1.

Function of the red LED
The red LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.
$\boxtimes \quad$ ON-delay (Delay on make)
CT-ERE, CT-MFE

Applying control supply voltage starts timing. When the selected time delay is complete, the output relay energizes. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset. Interrupting control supply voltage before the time delay is complete, resets the time delay. The output relay does not energize.

[^3]OFF-delay, with auxiliary voltage (Delay on break) CT-AHE, CT-MFE

This function requires continuous control supply voltage for timing.
Timing is controlled by control input $\mathrm{A} 1-\mathrm{Y} 1$. If the control input is closed, the output relay energizes. If control input $\mathrm{A} 1-\mathrm{Y} 1$ is opened, the selected time delay starts. When the time delay is complete, the output relay de-energizes. If control input A1Y 1 is closed before the time delay is complete, the time delay is reset. Timing starts again when the control input re-opens.

$\mathrm{t}=$ adjusted time delay
Minimum control pulse length: 20 ms

CT-E range

Function diagrams

OFF-delay, without auxiliary voltage (true delay on break) CT-ARE

The OFF-delay function without auxiliary voltage does not require continuous control supply voltage for timing. Applying control supply voltage, energizes the output relay. If control supply voltage is interrupted, the OFF-delay starts. When timing is complete, the output relay de-energizes. If control supply voltage is re-applied before the time delay is complete, the time delay is reset and the output relay remains energized.
Control supply voltage must be applied for the minimum energizing time (200 ms), for proper operation.

$t=$ adjusted time delay

Impulse-OFF, without auxiliary voltage (True trailing edge interval) CT-AWE

The Impulse-OFF function without auxiliary voltage does not require continuous control supply voltage for timing. If control supply voltage is interrupted, the output relay energizes and the OFF time starts. When timing is complete, the output relay de-energizes. If control supply voltage is re-applied before the time delay is complete, the time delay is reset and the output relay de-energizes.
Control supply voltage must be applied for the minimum energizing time (200 ms), for proper operation.

$t=$ adjusted pulse time

$1 \Omega \boxtimes \quad$ Impulse-ON (Interval)

 CT-VWE, CT-MFEThe output relay energizes immediately when control supply voltage is applied and de-energizes after the selected time delay is complete. If control supply voltage is interrupted before the time delay is complete, the output relay de-energizes and the time delay is reset.
Control input A1-Y1 has to be jumpered, when this timing function is selected.

CT-VWE:

CT-MFE:

Impulse-OFF, with auxiliary voltage (Trailing edge interval) CT-AWE

This function requires continuous control supply voltage for timing. Timing is controlled by control input A1-Y1. If the control input is opened, the output relay energizes and timing begins. When the selected time delay is complete, the output relay de-energizes. Interrupting control supply voltage or closing control input A1-Y1, before the time delay is complete, de-energizes the output relay and resets the time delay.

CT-E range

Function diagrams

$\Omega \quad$ Flasher starting with ON

(Recycling equal times, ON first) CT-MFE
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input A1-Y1 has to be open, when this timing function is selected.

$$
\mathrm{t}=\text { adjusted flashing time }
$$

ת【 Flasher starting with OFF
(Recycling equal times, OFF first) CT-EBE, CT-MFE
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.
Control input A1-Y1 has to be jumpered, when this timing function is selected.

CT-EBE:

CT-MFE:

Pulse former (Single shot) CT-MFE

Closing the control input A1-Y1, with control supply voltage applied, energizes the output relay for the selected ON time. Operating the control input during timing has no effect. When the ON time is complete, the output relay de-energizes. Timing can be restarted by re-closing control input $\mathrm{A} 1-\mathrm{Y} 1$. If control supply voltage is interrupted during timing, the output relay de-energizes and the ON time is reset.

CT-E range

Function diagrams

$\Delta \boxtimes \quad$ Star-delta change-over

Applying control supply voltage energizes the star contactor (K1) and the line contactor (K2) and begins the set starting time. When the starting time is complete, contact 15-16 deenergizes the star contactor (K1) Now, the fix transition time starts. When the transition time is complete, contact 15-16 energizes the delta contactor (K3).

$\Delta 1 \Omega \quad$ Star-delta change-over CT-SDE

Applying control supply voltage energizes the star contactor (K1) and the line contactor (K2) and begins the set starting time. When the starting time is complete, contact 15-16 deenergizes the star contactor (K1). Now, the fix transition time starts. When the transition time is complete, contact 15-18 energizes the delta contactor (K3).

[^4]
CT-E range
 Function diagrams

Multifunction timer CT-MKE

Functions and time ranges are programmed by simply plugging in external wire jumpers.

$\boxtimes \quad$ ON-delay (Delay on Make)

Without external connection. Timing begins when control supply voltage is applied to terminal A1 and the load connected in series with A2. When the selected time delay is complete, the load energizes. If control supply voltage is interrupted, the load de-energizes and the time delay is reset. Interrupting supply voltage before the time delay is complete, resets the time delay. The load does not energize.

$1 \Omega \boxtimes$ Impulse-ON (Interval)

External connection $\mathrm{X} 1-\mathrm{X} 4$ required. The load energizes and timing starts when control supply voltage is applied to terminal A1 and the load connected in series with A2. When the selected time delay is complete, the load de-energizes. Interrupting control supply voltage before the time delay is complete, de-energizes the load and resets the time delay.

$\Omega \boxtimes$ Flasher, starting with ON

External connection X1-X4 and X2-X4 required. When control supply voltage is applied to terminal A1 and the load connected in series with A2, the load energizes and de-energizes with the selected ON \& OFF times. The ON \& OFF times are equal. The cycle starts with an ON time first (load energized). If control supply voltage is interrupted, the load deenergizes and the time delay is reset.
Ω Flasher, starting with OFF
External connection X2-X4 required. When control supply voltage is applied to terminal A1 and the load connected in series with A2, the load energizes and de-energizes with the selected ON \& OFF times. The ON \& OFF times are equal. The cycle starts with an OFF time first (load deenergized). If control supply voltage is interrupted, the load de-energizes and the time delay is reset.

Programming the time ranges
X3-X4 jumpered: 0.1-10 s
X3-X4 open: 3-300 s

$\boxtimes \quad$ ON-delay (Delay on make) CT-EKE

Timing begins when control supply voltage is applied to terminal A1 and the load connected in series with AL. When the selected time delay is complete, the load energizes. The green LED glows as long as the load is energized. If control supply voltage is interrupted, the load de-energizes and the time delay is reset. Interrupting control supply voltage before the time delay is complete, resets the time delay. The load does not energize.

$t=$ adjusted time delay

OFF-delay, with auxiliary voltage (Delay on break)

 CT-AKEThe OFF-delay function with auxiliary voltage requires continuous control supply voltage at terminal A1, and the load connected in series with AL, for timing.
Timing is controlled by control input Y2-A2. When the control input is closed, the load energizes. If the control input is opened, the selected time delay starts (minimum control pulse length is 20 ms). The green LED glows as long as the load is energized. When the selected time delay is complete, the load de-energizes. If control input Y2-A2 is closed before the time delay is complete, the time delay is reset and the load remains energized. Timing starts again when the control input is re-opened. Interrupting control supply voltage resets the time delay and de-energizes the load.

$\mathrm{t}=$ adjusted time delay

Notice:

CT-...KE are solid-state timers with thyristor output for 2-wire applications. They are connected directly in series with the control coil of contactors or relays. Voltage should not be applied without a load connected, because there is no current limiting in the unit.

CT-E range
 Connection diagrams

$\triangle C T-E R E$

A1-A2 Supply: 220-240 V AC or 110-130 V AC A1-B1 Supply: 24 V AC/DC 15-16/18 c/o contact

CT-AHE ${ }^{1)}$

A1-A2 Supply: 24 V AC/DC or 110-240 V AC or 220-240 V AC
A1-Y1 Control input 15-16/18 c/o contact

A1-A2 Supply: 220-240 V AC or 110-130 V AC
A1-B1 Supply: 24 V AC/DC 15-16/18 c/o contact

1Л \triangle CT-VWE

A1	15	B1
16	18	A2

A1-A2	Supply: $220-240 \mathrm{~V} \mathrm{AC}$
	or $110-130 \mathrm{~V} \mathrm{AC}$
A1-B1	Supply: $24 \mathrm{~V} \mathrm{AC/DC}$
$15-16 / 18$	c/o contact

Device without aux. voltage A1(+)-A2(-) Supply: 24 V AC/DC or 110-240 V AC or $220-240$ V AC

15-16/18 c/o contact

2CDC 252158 F0b05

Device with aux. voltage

A1-A2	Supply: 24 V AC/DC
	or 110-240 V AC or
	$220-240$ V AC
A1-Y1	Control input
$15-16 / 18$	c/o contact

Ω CT-EBE

®
O
ㄴ
on
N
N
N
O
N

A1-A2 Supply: 220-240 V AC or 110-130 V AC A1-B1 Supply: 24 V AC/DC 15-16/18 c/o contact
$\Delta 1 \Omega \mathrm{CT}-\mathrm{SDE}$

Devices: 1SVR 550210 R4100 1SVR 550212 R4100
A1-A2 Supply: 110-130 V AC or $380-415 \mathrm{~V}$ AC

15-16 n/c contact
15-18 n/o contact with common contact

CT-MKE

A1-A2 Supply: 24-240 V AC/DC
A1-A2 Thyristor
X1-X4 Timing function adjustment X2-X4 Timing function adjustment X3-X4 Time range adjustment (Details see function diagrams)

[^5]
CT-E range

Connection diagrams, Technical diagrams

A1-AL Supply: 24-240 V AC/DC
A1-AL Thyristor

Technical diagrams

Load limit curves

AC load (resistive)

Derating factor F for inductive AC load

220 V 50 Hz AC1
360 cycles/h

Contact lifetime

CT-E range
 Technical data

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

		CT-E (relays)	CT-E (solid-state)
Input circuit - Supply circuit			
Rated control supply voltage $U_{\text {s }}$	A1-A2, A1-AL	24-240 V AC/DC	
	A1-A2, A1-AL	$24-240 \mathrm{~V}$ AC	
	A1-A2	$110-130 \mathrm{~V}$ AC	-
	A1-A2	220-240 V AC	-
	A1-A2	380-415 V AC	-
	A1-B1	$24 \mathrm{VAC/DC}$	-
Rated control supply voltage $U_{\text {s }}$ tolerance		$-15 \ldots+10 \%$	
Rated frequency	AC/DC versions	DC or $50 / 60 \mathrm{~Hz}$	
	AC versions	$50 / 60 \mathrm{~Hz}$	
Typical current / power consumption	$1 \quad 24-240$ V AC/DC, $24-240$ V AC	approx. 1.0-2.0 VA/W	
	$110-130 \vee \mathrm{AC}, 220-240 \vee \mathrm{AC}$	approx. 2.0 VA	-
	380-415 V AC	approx. 3.0 VA	-
	$24 \mathrm{VAC/DC}$	approx. 1.0 VA/W	\cdots
Minimum energizing time	CT-ARE, CT-AWE w/o aux. voltage	200 ms	
Current consumption while timing		-	$\begin{aligned} & \leq 2 \mathrm{~mA}(24-60 \mathrm{~V} \mathrm{AC} / \mathrm{DC}) \\ & \leq 8 \mathrm{~mA}(60-240 \mathrm{~V} \text { AC/DC) } \\ & \text { (CT-AKE only AC) } \end{aligned}$
Input circuit - Control circuit			
Kind of triggering		Voltage-related triggering	\cdots
Control input, Control function ${ }_{\text {Parallel load / polarized }}$		start timing external	\cdots
		no/yes 11	\cdots
Minimum control pulse length		20 ms	\cdots
Control voltage potential		see rated control supply voltage	-
Timing circuit			
Time ranges $\quad 1$1 of 5 time ranges per single-function device 8 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$ (CT-MFE)		$0.05-1 \mathrm{~s} / 0.1-10 \mathrm{~s} / 0.3-30 \mathrm{~s} / 3-300 \mathrm{~s} / 0.3-30 \mathrm{~min}$	
		1.) $0.05-1 \mathrm{~s}$ 2.) $0.5-10 \mathrm{~s}$ 3.) $5-100 \mathrm{~s}$ 4.) $50-1000 \mathrm{~s}$ 5.) $0.5-10 \mathrm{~min}$ 6.) $5-100 \mathrm{~min}$ 7.) $0.5-10 \mathrm{~h}$ 8.) $5-100 \mathrm{~h}$	-
2 time ranges 0.1-300 s (CT-MKE)		\cdots	1.) $0.1-10 \mathrm{~s}$ 2.) $3-300 \mathrm{~s}$
Recovery time		```<50 ms CT-ARE: <200 ms CT-AWE, CT-SDE: <400 ms CT-YDE: <500 ms```	CT-EKE: $<50 \mathrm{~ms}$ CT-MKE: <100 ms CT-AKE: <300 ms
Accuracy within the rated control supply voltage tolerance		$\Delta t<0.5 \% / \mathrm{V}$	
Accuracy within the temperature range		$\Delta t<0.1 \% /{ }^{\circ}{ }^{\circ} \mathrm{C}$	
		CT-MFE: $\Delta t<0.06 \% /{ }^{\circ} \mathrm{C}$	-
Repeat accuracy (constant parameters)		$\Delta t<1 \%$	
Star-delta transition time	CT-YDE / CT-SDE	$50 \mathrm{~ms} / 30 \mathrm{~ms}$	-
Output circuit			
Kind of output	$15-16 / 18$	Relay, $1 \mathrm{c} / \mathrm{o}$ contact	-
	CT-SDE: 15-16, 15-18	$1 \mathrm{n} / \mathrm{c}, 1 \mathrm{n} / \mathrm{o}$ contact with common contact	
	A1-A2. A1-AL	A	Thyristor
Contact material		AgCdO	-
Rated operational voltage U	IEC/EN 60947-1	250 V	
Maximum switching voltage		250 V AC, 250 V DC	
$\begin{aligned} & \text { Rated operational current I } \\ & \text { (IEC/EN 60947-5-1) } \end{aligned}$	AC-12 (resistive) at 230 V	4 A	-
	AC-15 (inductive) at 230 V	3 A	-
	DC-12 (resistive) at 24 V	4 A	\cdots

[^6]
CT-E range

Technical data

			CT-E (relays)	CT-E (solid-state)
$\overline{\text { AC rating (UL 508) }}$	Utilization ca	Control Circuit Rating Code)	B 300	-
		x. rated operational voltage	300 V AC	-
	Maximum	us thermal current at B300	5 A	-
	max. makin	ng apparent power at B 300	3600 VA / 360 VA	-
Mechanical lifetime			30×10^{6} switching cycles	-
Electrical lifetime		at AC-12, $230 \mathrm{~V}, 4 \mathrm{~A}$	0.1×10^{6} switching cycles	-
Max. fuse rating to achieve short-circuit protection (IEC/EN 60947-5-1)		n/c contact	10 A fast-acting, CT-ARE: 5 A	-
		n/o contact	10 A fast-acting, CT-ARE: 5 A	-
Minimum load current			- - - -	CT-MKE: 20 mA CT-EKE, CT-AKE: 10 mA
Maximum load current			-	CT-MKE: 0.8 A at $\mathrm{T}=20^{\circ} \mathrm{C}$ CT-EKE, CT-AKE: 0.7 A
Load current reduction / Derating			-	$10 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Maximum surge current			-	CT-MKE: ≤ 20 A for $\mathrm{t} \leq 20 \mathrm{~ms}$ CT-EKE, CT-AKE: $\leq 15 \mathrm{~A}$
Voltage drop in connected state Cable length between solid-state timer and connected load at 50 Hz and a cable capacity of $100 \mathrm{pF} / \mathrm{m}$:			-	$\leq 3 \mathrm{~V}$
		at 24 VAC	-	$220 \mathrm{~m} / 22 \mathrm{nF}$
		at 42 V AC	-	$100 \mathrm{~m} / 10 \mathrm{nF}$
		at $60 \vee \mathrm{AC}$	-	$65 \mathrm{~m} / 6.5 \mathrm{nF}$
		at 110 V AC	-	$50 \mathrm{~m} / 5 \mathrm{nF}$
		at 240 VAC	-	$22 \mathrm{~m} / 2.2 \mathrm{nF}$
General data				
Duty time			100\%	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)			$22.5 \times 78 \times 78.5 \mathrm{~mm}(0.886 \times 3.07 \times 3.09 \mathrm{in})$	
Weight			approx. 80 g (0.176 ib)	
Mounting			DIN rail (IEC/EN 60715)	
Mounting position			any	
Minimum distance to other units			no/no	
Degree of protection housing /terminals			IP50 / IP20	
Electrical connection				
Wire size		strand with wire end ferrule	$2 \times 0.75-1.5 \mathrm{~mm}^{2}(2 \times 18-16 \mathrm{AWG})$$2 \times 1-1.5 \mathrm{~mm}^{2}(2 \times 18-16 \mathrm{AWG})$	
	fine-strand without wire end ferrule			
			$2 \times 0.75-1.5 \mathrm{~mm}^{2}(2 \times 18-16$ AWG)	
Stripping length			10 mm (0.39 in)	
Tightening torque			0.6-0.8 Nm (5.31-7.08 lb.in)	
Environmental data				
Ambient temperature ranges operation / storage			$-20 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+85{ }^{\circ} \mathrm{C}$	
Damp heat			24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96 h	
Operational reliability			69	
Mechanical resistance ${ }^{\text {a }}$ IEC/EN 60068-2-6			10 g	
Isolation data				
$\begin{array}{ll}\text { Rated impulse withstand voltage } U_{i m p} & \text { IEC/EN 60664-1 } \\ \text { between all isolated circuits }\end{array}$			type test: 4 kV ; 1.2/50 $\mu \mathrm{s}$	-
			3	3
			IIII	IIII
Power-frequency withstand voltage (test voltage) between all isolated circuits			routine test: $2.5 \mathrm{kV} ; 50 \mathrm{~Hz} ; 1 \mathrm{~s}$ type test: 2.5 kV ; $50 \mathrm{~Hz} ; 60 \mathrm{~s}$	-
Basic insulation (IEC/EN 61140)			300 V -	
Rated insulation voltage U_{i} and input circuit / output circuit			300 V (supply up to 240 V) 500 V (supply up to 440 V)	-
Test voltage between all isolated circuits \quad routine test			$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~s}$	-
Standards				
Product standard			IEC 61812-1, EN 61812-1 + A11, DIN VDE 0435 Teil 2021	
Low Voltage Directive			2006/95/EC	
EMC Directive			2004/108/EC	
Electromagnetic compatibility				
Interference immunity to			IEC/EN 61000-6-2	
electrostatic discharge \quad IEC/EN 61000-4-2			Level $3(6 \mathrm{kV} / 8 \mathrm{kV})$	
radiated, radio-frequencyelectromagnetic field			Level 3 (10 V/m)	
electrical fast transient / burst			Level $3(2 \mathrm{kV} / 5 \mathrm{kHz})$	
surge			Level $4(2 \mathrm{kV}$ L-L)	
conducted disturbances, induced by radio- IEC/EN 61000-4-6 frequency fields			Level 3 (10 V)	
			IEC/EN 61000-6-4	

CT-E range

Wiring notes, Dimensional drawings

Dimensional drawing Dimensions in mm

2CDC 252189 F0b05

CT-E range

Notes

CT-S range
 Product group picture

CT-S range

Table of contents

CT-S Range

Product group picture 1/33
Table of contents 1/34
Benefits and advantages 1/35
Ordering details - multifunctional 1/37
Ordering details - singlefunctional 1/38
Ordering details - Accessories 1/39
Ordering details - Accessories 1/40
Function diagrams 1/41
Connection diagrams 1/49
Technical data 1/52
Technical diagrams 1/55
Wiring notes, Dimensional drawings 1/56

CT-S range
 Benefits and advantages

Characteristics

- Diversity:
- 8 multifunction timers
- 13 single-function timers
- Control supply voltages:
- Multi range: $24-48 \mathrm{~V}$ DC, 24-240 V AC
- Wide range: 24-240 V AC/DC
- Single range: 380-440 V AC
- Innovative connection technology
- Double-chamber cage connection terminals
- Easy Connect Technology
- Devices with:
- 1 or 2 c/o (SPDT) contacts
- 2nd c/o contact can be selected as instantaneous contact ${ }^{1)}$
- Remote potentiometer connection ${ }^{1)}$
- Control input with volt-free or voltage-related triggering e.g. to start timing, pause timing
- Extended operating temperature range down to $-40^{\circ} \mathrm{C}{ }^{1)}$
- Sealable transparent cover for protection against unauthorized changes of time values
- Integrated marker label
- Approvals / Marks (partly pending, details see page 1/4)

1) selected devices

Operating controls

[^7]
CT-S range

Benefits and advantages

Easy Connect Technology (1)

Tool-free wiring and excellent vibration resistance. Push-in terminals provide connection of wires up to $2 \times 0.5-1.5 \mathrm{~mm}^{2}$ ($2 \times 20-16$ AWG), rigid or fine-strand with or without wire end ferrules. The extended type designators for products with push-in terminals are indicated by a \mathbf{P} following the extended type designator e.g. CT-xxS.xxP.

Double-chamber cage connection terminals (2)
Double-chamber cage connection terminals provide connection of wires up to $2 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14$ AWG) rigid or fine-strand, with or without wire end ferrules. Potential distribution does not require additional terminals. The extended type designators for products with double-chamber cage connection terminals are indicated by a S following the extended type designator e.g. CT-xxS.xxS.

Time range preselection and fine adjustment (3) Direct assignment of the preselected time range to the fine adjustment potentiometer scale by multicolor scales.

Higher utility class (4)
The Easy Connect Technology provides excellent vibration resistance with gas tight push-in terminals - the right solution for harsh environment. Selected products of the electronic timers and measuring and monitoring relays comply to the latest rail standards NF F 16-101/102, EN 45545, EN 50155 and more standards which are relevant for railway applications. Find more inforamtion in the rail brochure 2CDC110084B0201.

LEDs for status indication ©
All actual operational states are displayed by front-face LEDs,

Integrated marker label ©
Integrated marker labels allow the product to be marked quickly and simply. No additional marker labels are required.

Sealable transparent cover (7)
Protection against unauthorized changes of time and threshold values. Available as an accessory.

Snap-On housing (8)
Tool-free DIN rail installation and deinstallation of the electronic timer.

CT－S range
 Ordering details－multifunctional

CT－MVS．21P

CT－MBS．22P

ON－delay（accumulative） OFF－delay without aux．voltage Impulse－ON
Impulse－OFF Symmetrical ON－delay and OFF－delay
Flasher starting with ON
 Flasher sta Puse generator staring
se generator starting

1ת

 impulsePulse former
Star－delta change－over twice ON－delayed with ON or OFF Pulse generator starting with ON or OFF Impulse－ON／OFF
Flasher starting with ON
lasher starting with OFF
1」Lfixed impulse with adjustable time delay
1ـAdjustable impulse with fixed time delay

Description

The highly sophisticated CT－S range in ABB＇s new S－range housing offers two different types of connection terminals and is ideally suited for universal use．Two different connection techno－ logies are available：
－Double－chamber cage connection terminals
－Easy Connect Technology

Accessories：

The CT－S range offers the possibility of using accessories such as a remote potentiometer to adjust the time delay or a sealable，transparent cover to protect against unauthorized changes． of time and threshold values．

Ordering details

Timing function	Rated control supply vol－ tage	Time ranges	Control input	Output	Type	Order code	Price $1 \text { pce }$	Weight （1 pce） kg（lb）
Multifunc－ tional ${ }^{5)}$	24－240 V AC／DC	$\begin{aligned} & 10(0.05- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / 0$	$\begin{aligned} & \text { CT-MVS.21S } \\ & \text { 112) } 3 \text {) } \end{aligned}$	1SVR730020R0200		$\begin{aligned} & 0.148 \\ & (0.326) \end{aligned}$
					$\begin{aligned} & \text { CTMMV. } 21 \mathrm{P} \\ & \text { 1123) } \end{aligned}$	1SVR740020R0200		$\begin{aligned} & 0.136 \\ & (0.30) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$				CT－MVS．22S	1SVR730020R3300		$\begin{aligned} & 0.142 \\ & (0.313) \end{aligned}$
					CT－MVS．22P	1SVR740020R3300		$\begin{aligned} & 0.131 \\ & (0.289) \end{aligned}$
	$380-440$ V AC				CT－MVS．23S	1SVR730021R2300		$\begin{aligned} & 0.144 \\ & (0.317) \end{aligned}$
					CT－MVS．23P	1SVR740021R2300		$\begin{aligned} & 0.133 \\ & (0.293) \end{aligned}$
Multifunc－ tional ${ }^{6)}$	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$1 \mathrm{c} / 0$	CT－MVS．12S	1SVR730020R3100		$\begin{aligned} & 0.107 \\ & (0.236) \end{aligned}$
					CT－MVS．12P	1SVR740020R3100		$\begin{aligned} & 0.102 \\ & (0.225) \end{aligned}$
Multifunc－ tional ${ }^{7 /}$	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 2 \times 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / 0$	CT－MXS．22S ${ }^{4}$ ）	1SVR730030R3300		$\begin{aligned} & 0.142 \\ & (0.313) \end{aligned}$
					CT－MXS．22P ${ }^{4)}$	1SVR740030R3300		$\begin{aligned} & 0.131 \\ & (0.289) \end{aligned}$
Multifunc－ tional ${ }^{8)}$	24－240 V AC／DC	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square / \square	$2 \mathrm{c} / 0$	CT－MFS．21S 1）23）	1SVR730010R0200		$\begin{aligned} & 0.145 \\ & (0.32) \end{aligned}$
					$\begin{aligned} & \text { CT-MFS.21P } \\ & 12231 \end{aligned}$	1SVR740010R0200		$\begin{aligned} & 0.133 \\ & (0.293) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square / \square	$2 \mathrm{c} / 0$	CT－MBS．22S ${ }^{2 / 3)}$	1SVR730010R3200		$\begin{aligned} & 0.14 \\ & (0.309) \end{aligned}$
					CT－MBS．22P ${ }^{233}$ ）	1SVR740010R3200		$\begin{aligned} & 0.129 \\ & (0.284) \end{aligned}$
Multifunc－ tional ${ }^{91}$	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	－	$2 \mathrm{c} / 0$	CT－WBS．22S	1SVR730040R3300		$\begin{aligned} & 0.123 \\ & (0.271) \end{aligned}$
					CT－WBS．22P	1SVR740040R3300		$\begin{aligned} & 0.115 \\ & (0.254) \end{aligned}$

1）Extended temperature range $-40^{\circ} \mathrm{C}$
Control input with voltage－related triggering
\square Control input with volt－free triggering
\square / \square two control input with volt－free triggering

2）Remote potentiometer connection
${ }^{3}$ ） 2 nd c／o contact selectable as instantaneous contact
－no triggering
S：screw connection
P：push－in／easy connect

4） 2 remote potentiometer connections
${ }^{5)}$ Functions：ON－delay，OFF－delay with auxiliary voltage，Impulse－ON，Impulse－OFF with auxiliary voltage，Symmetrical ON－and OFF－delay，Flasher starting with ON or OFF，Star－delta change－over with impulse，Pulse former，Accumulative ON－delay，ON／ OFF－function
${ }^{6)}$ Functions：ON－delay，OFF－delay with auxiliary voltage，Impulse－ON，Impulse－OFF with auxiliary voltage，Symmetrical ON－and OFF－delay，Flasher starting with ON or OFF，Pulse former，Accumulative ON－delay，ON／OFF－function
${ }^{7}$ ）Functions：Select function via DIP switches behind the marker label on the front of the unit，asymmetrical ON－and OFF－delay， Impulse－ON／OFF，Pulse generator starting with ON or OFF，Single pulse generator，ON／OFF－function
${ }^{8)}$ Functions：ON－delay，OFF－delay with auxiliary voltage，Impulse－ON，Impulse－OFF with auxiliary voltage，Symmetrical ON－and OFF－delay，Flasher starting with ON，Flasher starting with OFF，Star－delta change－over with impulse，Pulse former，ON／OFF－ function
9）Functions：Flasher starting with ON，Flasher starting with OFF，Impulse－ON，ON－delay，fixed impulse with adjustable time delay Adjustable impulse with fixed time delay，ON／OFF－function

CT－S range

Ordering details－singlefunctional

CT－ERS．21P

CT－AHS．22P

CT－SDS．23P

ON－delay（accumulative） OFF－delay without aux．voltage

1几囚Impulse－ON Fasher starting with ON Flasher staring with OFF Impulse－ON／OFF

Flasher starting with OFF
$\boxed{\triangle 1}$ 几fixed impulse with adjustable time delay
－1』Adjustable impulse with fixed time delay
$\Delta \quad$ Star－delta change－over

Timing function	Rated con－ trol supply voltage	Time ranges	Con－ trol input	Output	Type	Order code	Price 1 pce	Weight （1 pce） kg（Ib）
ON－delay	24－240 V AC／DC	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	－	$2 \mathrm{c} / 0$	CT－ERS．21S ${ }^{11}$	1SVR730100R0300		$\begin{aligned} & 0.13 \\ & (0.287) \end{aligned}$
					CT－ERS．21P1）	1SVR740100R0300		$\begin{aligned} & 0.121 \\ & (0.267) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$				CT－ERS．22S	1SVR730100R3300		$\begin{aligned} & 0.121 \\ & (0.267) \end{aligned}$
					CT－ERS．22P	1SVR740100R3300		$\begin{aligned} & 0.113 \\ & (0.249) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$		－	$1 \mathrm{c} / 0$	CT－ERS．12S	1SVR730100R3100		$\begin{aligned} & 0.106 \\ & (0.234) \end{aligned}$
					CT－ERS．12P	1SVR740100R3100		$\begin{aligned} & 0.101 \\ & (0.222) \end{aligned}$
OFF－delay	$24-240 \mathrm{~V} \mathrm{AC/DC}$	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / 0$	CT－APS．21S ${ }^{11}$	1SVR730180R0300		$\begin{aligned} & 0.146 \\ & (0.322) \end{aligned}$
					CT－APS．21P1）	1SVR740180R0300		$\begin{aligned} & 0.125 \\ & (0.276) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$				CT－APS．22S	1SVR730180R3300		$\begin{aligned} & 0.138 \\ & (0.304) \end{aligned}$
					CT－APS．22P	1SVR740180R3300		$\begin{aligned} & 0.127 \\ & (0.28) \end{aligned}$
			\square	$1 \mathrm{c} / 0$	CT－APS．12S	1SVR730180R3100		$\begin{aligned} & 0.109 \\ & (0.24) \end{aligned}$
					CT－APS．12P	1SVR740180R3100		$\begin{aligned} & 0.103 \\ & (0.227) \end{aligned}$
	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 10(0.05 \mathrm{~s}- \\ & 300 \mathrm{~h}) \end{aligned}$	\square	$2 \mathrm{c} / 0$	CT－AHS．22S	1SVR730110R3300		$\begin{aligned} & 0.136 \\ & (0.30) \end{aligned}$
					CT－AHS．22P	1SVR740110R3300		$\begin{aligned} & 0.125 \\ & (0.276) \end{aligned}$
OFF－delay ${ }^{5}$	$\begin{aligned} & 24-240 \\ & \text { VAC/DC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	－	$1 \mathrm{c} / 0$	CT－ARS．11S	1SVR730120R3100		$\begin{aligned} & 0.106 \\ & (0.234) \end{aligned}$
					CT－ARS．11P	1SVR740120R3100		$\begin{aligned} & 0.10 \\ & (0.22) \end{aligned}$
			－	$2 \mathrm{c} / 0$	CT－ARS．21S	1SVR730120R3300		$\begin{aligned} & 0.124 \\ & (0.273) \end{aligned}$
					CT－ARS．21P	1SVR740120R3300		$\begin{aligned} & 0.115 \\ & (0.254) \end{aligned}$
Star－delta change－over ${ }^{6)}$	$\begin{aligned} & 24-48 \text { V DC, } \\ & 24-240 \text { V AC } \end{aligned}$	$\begin{aligned} & 7(0.05 \mathrm{~s}- \\ & 10 \mathrm{~min}) \end{aligned}$	－	$2 \mathrm{n} / 0$	CT－SDS．22S	1SVR730210R3300		$\begin{aligned} & 0.114 \\ & (0.251) \end{aligned}$
					CT－SDS．22P	1SVR740210R3300		$\begin{aligned} & 0.108 \\ & (0.238) \end{aligned}$
	$380-440$ V AC				CT－SDS．23S	1SVR730211R2300		$\begin{aligned} & 0.118 \\ & (0.26) \end{aligned}$
					CT－SDS．23P	1SVR740211R2300		$\begin{aligned} & 0.112 \\ & (0.247) \end{aligned}$

1）Extended temperature range $-40^{\circ} \mathrm{C}$
${ }^{2)}$ Remote potentiometer connection
${ }^{3}$ ） 2 nd c / o contact selectable as instantaneous contact
$\left.{ }^{4}\right) 2$ remote potentiometer connections
${ }^{5}$ ）Without auxiliary voltage
${ }^{6)} 50 \mathrm{~ms}$ transition time
－Control input with voltage－related triggering \square Control input with volt－free triggering
\square / \square two control input with volt－free triggering －no triggering
S：screw connection
P：push－in／easy connect

CT-S range

Ordering details - Accessories

MT-x50B

30 mm adapters

Marker label $29.6 \times 44.5 \mathrm{~mm}$
 $48.5 \times 44.5 \mathrm{~mm}$

Marker label with scale 0-30 $48.5 \times 44.5 \mathrm{~mm}$

Remote potentiometer
$50 \mathrm{k} \Omega \pm 20 \%-0.2 \Omega$, degree of protection IP66

Material	Diameter	Type	Order code	Price	Pack.- unit pieces	Weight 1 piece g/oz
Plastic, black	in mm			1 piece		
Plastic, chrome	22.5	22.5	MT-150B	1SFA611410R1506		1
Metal, chrome	22.5	MT-250B	1SFA611410R2506		1	0.040

Note: Technical specifications see data sheet

30 mm adapter for attaching the potentiometer 22 mm in 30 mm mounting hole

Material	Type	Order code	Price	Pack.- unit pieces
Weight 1 piece $/$ oz				
Plastic, black			1 piece	
Metal, chrome	KA1-8029	1SFA616920R8029		1

Marker label
$\left.\begin{array}{l|l:l|l|l:l}\hline \text { Caption } & \text { Type } & \text { Order code } & \text { Price } & \begin{array}{l}\text { Pack.- } \\ \text { unit }\end{array} & \begin{array}{l}\text { Weight } \\ \text { piece }\end{array} \\ \text { pieces } \\ \text { g oz }\end{array}\right]$

CT-S range

Ordering details - Accessories

ADP. 01

COV. 01

MAR. 01

COV. 11

Accessories for CT-S in new housing (1SVR7...)

Description	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece g/oz
Adapter for screw mounting	ADP. 01	1SVR430029R0100		1	0.018 (0.040)
Sealable transparent cover	COV. 11	1SVR730005R0100		1	0.004 (0.009)
Marker label for devices w/o DIP switches	MAR. 01	1SVR366017R0100		10	0.001 (0.002)
Marker label for devices with DIP switches	MAR. 12	1SVR730006R0000		10	0.001 (0.002)

Accessories for CT-S in old housing (1SVR4...)

Description	Type	Order code	Price 1 piece	Pack.unit pieces	Weight 1 piece g/oz
Adapter for screw mounting	ADP. 01	1SVR430029R0100		1	0.018 (0.040)
Sealable transparent cover	COV. 01	1SVR430005R0100		1	0.004 (0.009)
Marker label for devices w/o DIP switches	MAR. 01	1SVR366017R0100		10	0.001 (0.002)
Marker label for devices with DIP switches	MAR. 02	1SVR430043R0000		10	0.001 (0.002)

CT-S range Function diagrams

Remarks

Legend
\square Control supply voltage not applied / Output contact open
Control supply voltage applied / Output contact closed

A1-Y1/B1 Control input with voltage-related triggering
Y1-Z2 Control input with volt-free triggering
X1-Z2 Control input with volt-free triggering

Remote potentiometer connection:
When an external potentiometer is connected to the remote potentiometer connection (terminals $\mathrm{Z} 1-\mathrm{Z2}, \mathrm{Z3}-\mathrm{Z2}$ respectively), the internal, front-face potentiometer is disabled and the time adjustment is made via the external potentiometer.

2nd c/o contact selectable as instantaneous contact: When switch position Inst. "I" is selected, the functionality of the 2nd c/o contact changes to an instantaneous contact. It acts like the c/o contacts of a switching relay, i.e. applying or interrupting the control supply voltage energizes or deenergizes the c/o contact. The designation of the $2 \mathrm{nd} \mathrm{c} / \mathrm{o}$ contact changes from 25-26/28 to 21-22/24, when selected as instantaneous contact.

$\boxtimes \quad$ ON-delay
 (Delay on make)
 CT-MVS, CT-ERS, CT-WBS

This function requires continuous control supply voltage for timing.
Timing begins when control supply voltage is applied. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

Terminal designations on the device and in the diagrams: The 1 st c/o contact is always designated 15-16/18.
The 2nd c/o contact is designated $25-26 / 28$, if it responds to the time delay.
If the 2nd c/o contact is selected as an instantaneous contact, the designation $25-26 / 28$ is replaced by $21-22 / 24$.
Control supply voltage is always applied to terminals A1-A2.

Function of the yellow LEDs:

On devices without the function '2nd c/o contact selectable as instantaneous contact', the yellow LED R glows as soon as the output relay energizes and turns off when the output relay de-energizes.

Devices with the function ' 2 nd c/o contact selectable as instantaneous contact' have two yellow LEDs, designated R1 and R2. LED R1 shows the status of the 1st c/o contact (1516/18) and LED R2 shows the status of the 2 nd c/o contact (25-26/28, 21-22/24 resp.). LED R1 or R2 glow as soon as the corresponding output relay energizes and turns off when the corresponding output relay de-energizes.

```
| ON-delay
    (Delay on make)
CT-MFS, CT-MBS
```

This function requires continuous control supply voltage for timing.
If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input Y1-Z2 also starts timing. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control input $\mathrm{Y} 1-\mathrm{Z} 2$ closes before the time delay is complete, the time delay is reset and the output relay remains de-energized.
Pause timing / Accumulative ON-delay (CT-MFS):
Timing can be paused by closing control input X1-Z2. The elapsed time t1 is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

CT-S range
 Function diagrams

区+ Accumulative ON-delay
(Accumulative delay on make)
CT-MVS

This function requires continuous control supply voltage for timing.
Timing begins when control supply voltage is applied. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
Timing can be paused by closing control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$. The elapsed time t 1 is stored and continues from this time value when $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

OFF-delay with auxiliary voltage
(Delay on break)
CT-MVS, CT-APS

This function requires continuous control supply voltage for timing.
If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ is closed, the output relay energizes immediately. If control input A1-Y1/B1 is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de-energizes and the flashing green LED turns steady.
If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ recloses before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input A1Y1/B1 re-opens.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

OFF-delay with auxiliary voltage (Delay on break)
CT-MFS, CT-MBS, CT-AHS

This function requires continuous control supply voltage for timing.
If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is closed, the output relay energizes immediately. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de- energizes and the flashing green LED turns steady.
If control input Y1-Z2 closes before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input Y1-Z2 re-opens.
Pause timing / Accumulative OFF-delay (CT-MFS):
Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t1 is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z2}$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

OFF-delay without auxiliary voltage
(True delay on break)
CT-ARS
The OFF-delay function without auxiliary voltage does not require continuous control supply voltage for timing. After a storage time of several months without any voltage, a formatting time of about 5 minutes is necessary.
Applying control supply voltage energizes the output relay immediately. Applied control supply voltage is displayed by the glowing green LED. If control supply voltage is interrupted, the OFF-delay starts and the LED turns off. When timing is complete, the output relay de-energizes.
For correct operation of the unit, it is necessary to complete the minimum energizing time. As soon as timing starts, the LED turns off.

CT-S range
 Function diagrams

Symmetrical ON-delay and OFF-delay

 (Symmetrical delay on make and delay on break) CT-MFS, CT-MBSThis function requires continuous control supply voltage for timing.
Closing control input Y1-Z2 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input $Y 1$-Z2 starts the OFF-delay t_{2}. Both timing functions are displayed by the flashing green LED. When the OFF-delay t_{2} is complete, the output relay de-energizes.
If control input Y 1 -Z2 opens before the ON -delay t_{1} is complete, the time delay is reset and the output relay remains deenergized. If control input Y1-Z2 closes before the OFF-delay t_{2} is complete, the time delay is reset and the output relay remains energized.
Pause timing / Accumulative, symmetrical ON-delay and OFF-delay (CT-MFS): Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z2}$. The elapsed time t_{12} or $\mathrm{t}_{2 \mathrm{a}}$ is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z2}$ is re-opened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

《【 Symmetrical ON-delay and OFF-delay (Symmetrical delay on make and delay on break) CT-MVS

This function requires continuous control supply voltage for timing.
Closing control input A1-Y1/B1 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input A1-Y1/B1 starts the OFF-delay t_{2}. Both timing functions are displayed by the flashing green LED. When the OFF-delay t_{2} is complete, the output relay de-energizes. If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ opens before the ON -delay t_{1} is complete, the time delay is reset and the output relay remains de-energized. If control input $\mathrm{A} 1-\mathrm{Y} 1 / \mathrm{B} 1$ closes before the OFF-delay t_{2} is complete, the time delay is reset and the output relay remains energized.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$\mathrm{t}_{1}=$ adjusted ON-delay
$\mathrm{t}_{2}=$ adjusted OFF-delay
$\mathrm{t}_{1}=\mathrm{t}_{2}$

CT-S range
 Function diagrams

凹ا Asymmetrical ON-delay and OFF-delay (Asymmetrical delay on make and delay on break) CT-MXS
This function requires continuous control supply voltage for timing.
Closing control input A1-Y1/B1 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input A1-Y1/B1 starts the OFF-delay t_{2}. When the OFF-delay is complete, the output relay de-energizes. Both timing functions are displayed by the flashing green LED. The ON-delay and OFF-delay are independently adjustable.
If control input A1-Y1/B1 opens before the ON-delay is complete $\left(<t_{1}\right)$, the time delay is reset and the output relay remains de-energized.
If control input A1-Y1/B1 closes before the OFF-delay is complete $\left(<t_{2}\right)$, the time delay is reset and the output relay remains energized.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$1 \Omega \boxtimes$ Impulse-ON
(Interval)
CT-MFS, CT-MBS
This function requires continuous control supply voltage for timing.
The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady.
Closing control input $\mathrm{Y} 1-\mathrm{Z} 2$, before the pulse time is complete, de-energizes the output relay and resets the pulse time. Pause timing / Accumulative impulse-ON (CT-MFS):
Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z2}$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$1 \Omega \boxtimes$ Impulse-ON
(Interval)
CT-MVS, CT-WBS

This function requires continuous control supply voltage for timing.
The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. The green LED flashes during timing. When the selected pulse time is complete, the flashing green LED turns steady.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$\square \square$Impulse-OFF with auxiliary voltage (Trailing edge interval) CT-MFS, CT-MBS

This function requires continuous control supply voltage for timing.
If control supply voltage is applied, opening control input Y1Z2 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady.
Closing control input $\mathrm{Y} 1-\mathrm{Z} 2$, before the pulse time is complete, de-energizes the output relay and resets the pulse time. Pause timing / Accumulative impulse-OFF (CT-MFS):
Timing can be paused by closing control input X1-Z2. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is re-opened.
This can be repeated as often as required.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

Impulse-OFF with auxiliary voltage
(Trailing edge interval) CT-MVS

This function requires continuous control supply voltage for timing.
If control supply voltage is applied, opening control input A1-Y1/B1 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady.
Closing control input A1-Y1/B1, before the pulse time is complete, de-energizes the output relay and resets the pulse time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$\Omega \quad$ Flasher, starting with the ON time
 (Recycling equal times, ON first) CT-WBS

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$\Omega \boxtimes \quad$ Flasher with reset, starting with the ON time (Recycling equal times with reset, ON first) CT-MFS, CT-MBS
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The time delay can be reset by closing control input Y1-Z2. Opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the timer pulsing again with symmetrical ON \& OFF times.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

1』㓉 Impulse-ON and impulse-OFF (Interval and trailing edge interval) CT-MXS

This function requires continuous control supply voltage for timing. If control supply voltage is applied, closing control input A1-Y1/B1 energizes the output relay immediately and starts the pulse time t_{1}. The green LED flashes during timing. When t_{1} is complete, the output relay de-energizes and the flashing green LED turns steady. Re-opening control input A1-Y1/B1 energizes the output relay immediately and starts the pulse time t2. The green LED flashes during timing. When t_{2} is complete, the output relay de-energizes and the flashing green LED turns steady. t_{1} and t_{2} are independently adjustable. If control input A1-Y1/B1 changes state before the pulse time is complete, the output relay de-energizes and the pulse time is reset. If control input A1-Y1/B1 changes state again, the interrupted pulse time restarts. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

$\mathrm{t}_{1}=$ adjusted pulse time 1
$\mathrm{t}_{2}=$ adjusted pulse time 2

תㅁ

> Flasher, starting with the OFF time (Recycling equal times, OFF first) CT-WBS

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

Ω Flasher with reset, starting with the OFF time (Recycling equal times with reset, OFF first) CT-MFS, CT-MBS
Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The time delay can be reset by closing control input $\mathrm{Y} 1-\mathrm{Z} 2$. Opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the timer pulsing again with symmetrical ON \& OFF times.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

CT-S range
 Function diagrams

ת Flasher, starting with the ON or OFF time (Recycling equal times, ON or OFF first) CT-MVS

Applying control supply voltage starts timing with symmetrical ON \& OFF times. The cycle starts with an ON time first. Closing control input A1-Y1/B1, with control supply voltage applied, starts the cycle with an OFF time first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

10 Pulse former
 (Single shot)
 CT-MVS

This function requires continuous control supply voltage for timing.
Closing control input A1-Y1/B1 energizes the output relay immediately and starts timing. Operating the control contact switch A1-Y1/B1 during the time delay has no effect. The green LED flashes during timing. When the selected ON time is complete, the output relay de-energizes and the flashing green LED turns steady. After the ON time is complete, it can be restarted by closing control input A1-Y1/B1. If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

This function requires continuous control supply voltage for timing.
Closing control input $\mathrm{Y} 1-\mathrm{Z} 2$ energizes the output relay immediately and starts timing. Operating the control contact switch Y1-Z2 during the time delay has no effect. The green LED flashes during timing. When the selected ON time is complete, the output relay de-energizes and the flashing green LED turns steady. After the ON time is complete, it can be restarted by closing control input $\mathrm{Y} 1-\mathrm{Z} 2$.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

짐 Pulse generator, starting with the ON or OFF time (Recycling unequal times, ON or OFF first) CT-MXS

This function requires continuous control supply voltage for timing.
Applying control supply voltage, with open control input A1-Y1/B1, starts timing with an ON time t_{2} first. Applying control supply voltage, with closed control input A1-Y1/B1, starts timing with an OFF time t_{1} first. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The ON \& OFF times are independently adjustable.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

CT-S range
 Function diagrams

Single-pulse generator, starting with the OFF time
(Delay on make with interval output)
CT-MXS CT-MXS

This function requires continuous control supply voltage for timing.
Applying control supply voltage, or, if control supply voltage is already applied, opening control input A1-Y1/B1 energizes the output relay after the OFF time t_{1} is complete. When the following ON time t_{2} is complete, the output relay de-energizes. The ON \& OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The ON \& OFF times are independently adjustable.
Closing control input A1-Y1/B1, with control supply voltage applied, de-energizes the output relay and resets the time delay.
If control supply voltage is interrupted, the output relay deenergizes and the time delay is reset.

$\triangle 1 \Omega \quad$ Fixed impulse with adjustable time delay (Delayed pulse output) CT-WBS

This function requires continuous control supply voltage for timing.
The time delay t_{1} starts when control supply voltage is applied. The green LED flashes during timing. When t_{1} is complete, the output relay energizes for the fixed impulse time t_{2} of 500 ms and the flashing green LED turns steady.
If control supply voltage is interrupted, the time delay is reset. The output relay does not change state.

This function requires continuous control supply voltage for timing.
Applying control supply voltage starts the fixed time delay t_{2} of 500 ms . When t_{2} is complete, the output relay energizes and the selected pulse time t_{1} starts. The green LED flashes during timing. When t_{1} is complete, the output relay de-energizes and the flashing green LED turns steady.
If control supply voltage is interrupted, the pulse time is reset. The output relay does not change state.

CT-S range

Function diagrams

$\Delta 1 \Omega \quad$ Star-delta change-over with impulse function
(Star-delta starting, interval/delay on make)
CT-MFS, CT-MBS, CT-MVS. 2 x
This function requires continuous control supply voltage for timing. Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 15-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first c/o contact de-energizes the star contactor.
Now, the fixed transition time t_{2} of 50 ms starts. When the transition time is complete, the second c/o contact energizes the delta contactor connected to terminals 25-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

Δ

> Star-delta change-over
> (Star-delta starting)
> CT-SDS

This function requires continuous control supply voltage for timing. Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 17-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first output contact de-energizes the star contactor.
Now, the fixed transition time t_{2} of 50 ms starts. When the transition time is complete, the second output contact energizes the delta contactor connected to terminals 17-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

CT－S range
 Connection diagrams

1

CT－MVS． 21		
A1	15	25
Y1／B1	Z2	Z1
18	16	A2

A1－A2 Supply：24－240 V AC／DC
A1－Y1／B1 Control input
15－16／18 1．c／o contact
25－26／28 2．c／o contact
21－22／24 2．c／o contact as instantaneous contact
Z1－Z2 Remote potentiometer connection

CT－MVS． 22

A1－A2 Supply：380－440V AC
A1－Y1／B1 Control input
15－16／18 1．c／o contact
25－26／28 2．c／o contact

CT－MVS． 12

9090 』 $\downarrow 00$ 乙૬己 Јロつ乙

A1－A2 Supply：24－48 V DC or 24－240 V AC
A1－Y1／B1 Control input
15－16／18 1．c／o contact

CT－MXS． 22

A1－A2 Supply：24－48 V DC or $24-240 \mathrm{~V}$ AC
A1－Y1／B1 Control input 15－16／18 1．c／o contact 25－26／28 2．c／o contact
Z1－Z2 Remote potentiometer connection
Z3－Z2 Remote potentiometer connection

CT－MFS． 21

A1－A2 Supply：24－240 V AC／DC
15－16／18 1．c／o contact
25－26／28 2．c／o contact
21－22／24 2．c／o contact as instantaneous contact

Y1－Z2 Control input
X1－Z2 Control input
Z1－Z2 Remote potentiometer connection

CT－MBS． 22

A1	15	25
	Z2	Z1
2824	2622	Y1
18	16	A2

A1－A2 Supply：24－48 V DC or 24－240 V AC
15－16／18 1．c／o contact
25－26／28 2．c／o contact
21－22／24 2．c／o contact as instantaneous contact
Y1－Z2 Control input
Z1－Z2 Remote
potentiometer
connection

CT－WBS． 22

$9090 \dashv 800$ 乙乌ะ כロО乙

A1－A2 Supply：24－48 V DC or 24－240 V AC
15－16／18 1．c／o contact
25－26／28 2．c／o contact

A1－A2 Supply：24－240 V AC／DC
15－16／18 1．c／o contact
25－26／28 2．c／o contact
\boxtimes CT－ERS． 22

A1－A2 Supply：24－48 V DC
or 24－240 V AC
15－16／18 1．c／o contact
25－26／28 2．c／o contact
\boxtimes CT－ERS． 12

2CDC 252010 F0b06

A1－A2 Supply：24－48 V DC
or 24－240 V AC
15－16／18 1．c／o contact

CT－S range

Connection diagrams

A1－A2 Supply：24－240 V AC／DC
A1－Y1／B1 Control input
15－16／18 1．c／o contact
25－26／28 2．c／o contact

[^8]\square CT－APS． 12

A1－A2 Supply：24－48 V DC or 24－240 V AC
A1－Y1／B1 Control input 15－16／18 1．c／o contact

CT－AHS． 22

9090」 \＆เ0 乙૬乙 כロכ乙

A1－A2 Supply：24－48 V DC or 24－240 V AC
Y1－Z2 Control input
15－16／18 1．c／o contact 25－26／28 2．c／o contact
－CT－ARS． 11

A1－A2 Supply：24－240 V AC／DC 15－16／18 1．c／o contact

CT－ARS． 21

A1－A2 Supply：24－240 V AC／DC
15－16／18 1．c／o contact 25－26／28 2．c／o contact
\triangle CT－SDS． 22

9090 －910 乙乌己 כロכ乙
\triangle CT－SDS． 23

9090」 910 乙乌己 כロつて

A1－A2	Supply： $24-48 \mathrm{~V}$ DC or	A1－A2	Supply：380－440 V AC
	$24-240$ V AC	$17-18$	1．n／o contact
17－18	1．n／o contact	$17-28$	2．n／o contact
17－28	2．n／o contact		

CT-S range
 Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

[^9]
CT-S range

Technical data

CT-S range
 Technical data

Environmental data	
Ambient temperature ranges operation/storage	$-25 \ldots+60^{\circ} \mathrm{C} /-40 . .+85^{\circ} \mathrm{C}$, $-40 .+60^{\circ} \mathrm{C} /-40 \ldots+85^{\circ} \mathrm{C}$ (CT-MVS.21, CT-MFS.21, CT-ERS. 21 CT $-40 . . .+60^{\circ} \mathrm{C}$ CT-APS.
Damp heat (cyclic) (IEC/EN 60068-2-30)	$6 \times 24 \mathrm{~h} \mathrm{cycle}, 55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$
Vibration, sinusoidal (IEC/EN 60068-2-6)	$40 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}$
resistance	$60 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}, 20 \mathrm{cycles}$
Vibration, seismic (IEC/EN 60068-3-3) functioning	$20 \mathrm{~m} / \mathrm{s}^{2}$
Shock, half-sine (IEC/EN 60068-2-27) $\quad \cdots \quad \begin{aligned} & \text { functioning }\end{aligned}$	$100 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3 \mathrm{shocks} /$ direction
	$300 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
	CT-S with $1 \mathrm{c} / \mathrm{o}$ - CT-S with $2 \mathrm{c} / \mathrm{o}$
Rated insulation voltage $U_{i} \quad$ input circuit / output circuit	500 V
	not available 300 V
Rated impulse withstand voltage $U_{i m p} \quad$ IEC/EN 60664-1 between all isolated circuits	type test: 4 kV ; $1.2 / 50 \mu \mathrm{~s}$
Power-frequency withstand voltage (test voltage) between all isolated circuits	routine test: $2.0 \mathrm{kV} ; 50 \mathrm{~Hz} ; 1 \mathrm{~s}$ type test: 2.0 kV ; 50 Hz ; 60 s
Basic insulation (IEC/EN 61140)	500 V
Protective separation (IEC/EN 61140; EN 50178)	250 V
Pollution degree \sim IEC/EN 60664-1	3
Overvoltage category IEC/EN 60664-1	III
Standards	
Product standard	IEC 61812-1, EN 61812-1 + A11, DIN VDE 0435 part 2021
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
RoHS Directive	2011/65/EC
Electromagnetic compatibility	
Interference immunity to	IEC/EN 61000-6-1, IEC/EN 61000-6-2
electrostatic discharge IEC/EN 61000-4-2	Level $3,6 \mathrm{kV} / 8 \mathrm{kV}$
radiated, radio-frequency electromagnetic field	Level 3, $10 \mathrm{~V} / \mathrm{m}(1 \mathrm{GHz}) 3 \mathrm{~V} / \mathrm{m}(2 \mathrm{GHz}) 1 \mathrm{~V} / \mathrm{m}(2.7 \mathrm{GHz})$
electrical fast transient / burst \times IEC/EN 61000-4-4	Level $3,2 \mathrm{kV} / 5 \mathrm{kHz}$
surge	Level 4, 2 kV A1-A2
conducted disturbances, induced by IEC/EN 61000-4-6 radio-frequency fields	Level 3, 10 V
harmonics and interharmonics - IEC/EN 61000-4-13	Class 3
Interference emission	IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated IEC/CISPR 22, EN 55022	Class B
high-frequency conducted $\cdots \cdots \cdots \cdots \cdots$ IEC/CISPR 22, EN 55022	Class B

„Approvals and marks" see page 1/4.

CT-S range

Technical diagrams

Technical diagrams

Load limit curves

AC load (resistive)

Derating factor F for inductive AC load

DC load (resistive)

Contact lifetime

CT-S range

Wiring notes, Dimensional drawings

Control inputs
(volt-free triggering)

Triggering of the control inputs (volt-free) with a proximity switch (3 wire)

Control inputs

(voltage-related triggering)

The control input $\mathrm{Y} 1 / \mathrm{B} 1$ is triggered with electric potential against A 2 . It is possible to use the control supply voltage from terminal A1 or any other voltage within the rated control supply voltage range.

Remote potentiometer

Dimensional drawing Dimensions in mm

	Helsinki tel. +3589540 4940 automation@klinkmann.fi	St. Petersburg tel. +7 8123273752 klinkmann@klinkmann.spb.ru	Moscow tel. +7 4956411616 moscow@klinkmann.spb.ru
	Yekaterinburg tel. +7 3432871919 yekaterinburg@klinkmann.spb.ru	Samara tel. +7 8462739585 samara@klinkmann.spb.ru	Kiev tel. +380444953340 klinkmann@klinkmann.kiev.ua
Riga tel. +371 67381617 klinkmann@klinkmann.lv	Vilnius tel. +370 52151646 post@klinkmann.lt	Tallinn tel. +372 6684500 klinkmann.est@klinkmann.ee	Minsk tel. +375 172000876 minsk@klinkmann.com

[^0]: ${ }^{1)}$ Applicable in rail application following the latest standards for rail applications．Further information are available in our rail segment brochure 2CDC110084B0201．

[^1]: 1) Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Impulse-OFF with auxiliary voltage, Flasher starting with ON, Flasher starting with OFF, Pulse former
 ${ }^{2)} \mathrm{ON}$ and OFF times adjustable independently: 2×7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h} \quad$ Control input with voltage-related triggering
 2) Transition time 50 ms fixed
 ${ }^{4)}$ Transition time adjustable
[^2]: 1)Functions: ON-delay, OFF-delay with auxiliary voltage, Impulse-ON, Flasher starting with ON, Flasher starting with OFF,

 Pulse former
 2) without auxiliary voltage, True Off-delay timer

 - Control input with voltage-related triggering no triggering

[^3]: $t=$ adjusted time delay

[^4]: Control circuit diagram

[^5]: 1) ","Wiring notes, Dimensional drawings" see page $1 / 31$.
[^6]: ${ }^{1)}$ CT-MFE: yes / no

[^7]: 1 2nd contact as an instantaneous contact
 2 Preselection of the time range
 3 Indication of operational states
 U/T: \swarrow control supply voltage applied / $\nearrow \square$ timing
 $R: ~ \$ Output relay energized
 4 Fine adjustment of time delay
 5 Preselection of timing function
 6 Marker label

[^8]: CT－APS． 22

 A1－A2 Supply：24－48 V DC or 24－240 V AC A1－Y1／B1 Control input
 15－16／18 1．c／o contact 25－26／28 2．c／o contact

[^9]: ${ }^{1)}$ prior to first commisioning and after a six-month stop in operation

